您好、欢迎来到现金彩票网!
当前位置:2019欢乐棋牌 > 指令调度 >

N卡号还是A卡好?

发布时间:2019-07-29 21:07 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部N卡和A卡两家架构问题要深究就得写一本书了。下面就简单通俗的介绍一下,方便初学者理解。

  在DX9以前的时代,两家的架构主要由像素单元、顶点单元、纹理单元、光栅单元组成,一个渲染流程的所有单元绑在一起组成一条渲染管线D指令居多(像素有RGBA,顶点有XYZW),这些单元就被设计成了一次能处理4D指令的处理器,属于指令级并行架构,对于当时的游戏环境来说这种架构效率很高。但到了DX9后期甚至DX10时代,游戏中的1D、2D、3D指令开始频繁混合出现,像素与顶点的渲染比例也有了改变,原先的架构就变得效率低下了,比如一个单元一次能处理4D运算,当碰到1D运算时就只用到4/1的资源,剩下3/4的资源就闲置掉了,相当于效率降低了4倍。而有些游戏的像素渲染量明显多于顶点,那么这些数量比例固定的单元就效率低下了,比如像素单元吃力的时候,顶点可能比较空闲,非常浪费硬件资源。为了解决这个问题,NV和ATI就对各单元的数量比例进行了调整,但都治标不治本。这时候重新设计新的架构成为了必然。结果,从DX10时代起,两家的架构就起了翻天复地的变化。

  N卡的架构思路很简单,用强大的前端处理器把所有指令拆分成一个个1D指令,而下面所有运算单元都变成了1D单元(流处理器),这些流处理器都能当做像素和顶点单元来使用,这样不管碰到什么类型的指令都能“一拥而上”,完全解决了DX9时代固定单元的弊端。为了保证指令分派的高效率,这些流处理器都分成几大组管理,每一组都具备完整的前后端及缓存单元,每个流处理器都对应独立的控制单元,效率几乎达到100%的理想程度,是标准的线程级并行架构,也是追求高效率的理想架构。

  N卡的架构看上去很完美,但缺点也很明显,要想增加运算单元,必需以组为单位进行扩充,这样连带的前后端控制单元、功能单元和缓存都会成正比增加,晶体管消耗严重,所以在相同晶体管数量的情况下,N卡能做的流处理器就相对少很多。在流处理器数量相对少的情况下,处理4D指令时又会显得性能不足(因为要耗费四个流处理器去处理一个指令),所以N卡的流处理器频率都会比核心频率高出一倍以上,以弥补数量上的缺陷,但高频率带来的翻倍流水线又再次消耗了大量晶体管,最终结果就是功耗巨大,制造难度极高。

  总结,N卡架构执行效率(硬件资源利用率)极高,灵活性强,在实际应用中容易发挥峰值性能。但运算单元较难堆砌,理论运算能力也受到较大限制。低良品率和功耗问题也一直如影随形。

  A卡方面,也是采用通用的1D流处理器做为执行单元,每5个流处理器为一组,每组一次最大可接收一条5D指令(而N卡接收的是1D指令),在前端上就把所有指令打包成一个个5D指令发下去(而N卡是拆分成一个个1D发下去),当接到5D指令后,下面的5个流处理器就可以并行执行,属于指令级并行架构,又被称为5D架构,这样的设计可以实现高指令吞吐。同时控制单元与运算单元可做到分离,流处理器的增加不会牵动其它单元,晶体管消耗较少,所以A卡的流处理器数量一般都能做到N卡的4-5倍,芯片面积反而较小,理论运算能力也远强于N卡,功耗也相对要低一些。

  但是,A卡架构的缺点也很明显,虽然理论计算性能强大,但较少的控制单元限制了其指令调度效率,下面流处理器越多,前端压力就越大。一旦碰到混合指令或条件指令的时候,前端就很难实现完整的5D打包,往往变成3D、2D、1D的发下去了,造成每组流处理器只有3、2甚至1个在工作,几乎一半的单元浪费掉了,再加上每个5D包里面可能存在最糟糕的组合(比如有先后关系的指令被包到了一起),常常导致部分指令被踢出去再走一次打包运算的流程。程序要想针对这种架构优化,必需减少混合、条件指令的出现(需要耗费程序员的大量精力),或杜绝(这是不可能的)。所以在软件优化度上A卡也是处于劣势的,常常无法发挥应有性能。

  总结,A卡架构优势在于可以方便的扩充运算单元,实现强大的理论运算能力,晶体管消耗较少,功耗容易控制。但流处理器扩充得越多,效率就越低下,对于复杂多变的任务种类适应性不强,如果没有软件上的支持,常常无法发挥应有性能。所以A卡除了需要游戏厂商的支持外,自己也要常常发布针对某款游戏优化的驱动补丁(造成A卡发布半年后,还可通过驱动提升性能的现象)。

  小节:两家在DX10架构上走上了完全相反的设计路线,而且都走得很极端。NV选择的线程级并行路线在实际应用中表现出了良好的性能,但这类架构的弊端就是庞大的晶体管规模和制造难度,功耗也很难控制。而AMD对指令级并行架构的信心来自于DX9时代的辉煌,毕竟3D游戏中的4D指令还是占了较大比例,其庞大的运算单元有着很大发挥空间,但指令调度限制较大,效率低下的问日趋严重。如果两家都没有解决自身缺点的办法,那么终有一天会撞到南墙(果然,在DX11后就同时撞上了)

  在物理加速技术方面,全球主流的是Havok技术,目前为INTEL所有,平台支持度高,各领域巨头(包括AMD)也都默认对其支持,可以说是最通用的技术,在游戏支持度上占了60%以上市场份额。但该技术偏重CPU处理(少部分可由A卡协处理),性能比较有限,可展现的效果规模较小。

  而物理技术的另一股新势力就是AGEIA公司的PhysX技术,硬件上以独立的加速卡形式存在,性能专一且强劲,能够展现更复杂的物理效果,但该技术并不开放,需要购买加速卡才能实现,限制了其支持度。自08年NV收购AGEIA公司后,PhysX技术就变成N卡专属,在DX10以后的N卡中都集成了PhysX物理引擎,但封闭的策略还是没变,要想实现PhysX物理效果,用户必需拥有一块DX10以上级别的N卡,这对于游戏厂商来说是比较冒险的,如果“性能足够”的N卡硬件用户量不足,那么软件厂商就亏大了,加上这类只能由特定硬件实现的技术很难用在多人对战游戏上(因为游戏中所有玩家互动结果和视觉障碍都要绝对一至),所以采用PhysX技术的游戏数量至今也没占到主流,很多厂商宁可对N卡优化,也不支持PhysX技术。不过NV通过强势的营销策略,甚至有些时候是“非常规”的营销,为人所知,市场前景也是被看好的。

  总结:在物理加速技术上NV属于剑走偏锋型,企图利用封闭的技术搞垄断排挤(与索尼的储存卡(记忆棒)有点相似),但要排挤主流的INTEL、AMD阵营是极其困难的,毕竟在硬件占有率上INTEL、AMD的CPU就占了97%以上市场,即使是显卡市场也是INTEL占了大头,这种垄断地位极难攀越。结局是否和索尼一样我们不得而知。目前来看,支持PhysX技术的游戏只相当于Havok的三成左右,数量不占优势,而很多初学者把支持物理加速技术和游戏优化的概念搞混了,以为针对N卡优化的游戏就采用PhysX技术,其实这两者没有什么关系,针对N卡优化的游戏虽然较多,但采用PhysX物理技术的游戏是比较少的。这方面两家算是不分胜负,不过在选购上N卡又多了个筹码。

  高清解码方面,自蓝光战胜HD-DVD后,市场上高清片源开始增多,但高清影片播放时的解码任务对当时的双核CPU来说是非常吃力的,中端以下CPU全线投降,这时候NV和AMD适时的在DX10架构中加入了高清解码功能,分担几乎所有的CPU工作,让低端CPU也能流畅的播放高清电影。当时高清格式主要有三种,奇怪的是N卡只支持一种格式的完全解码,这就导致N卡玩家在播放别的格式高清影片时CPU还是非常吃力,甚至卡顿;而A卡则支持了双格式解码(剩下一种格式运算量不大,CPU能搞定),这样A卡用户即使在入门级的CPU下也可以流畅播放高清了,CPU还有大量余力干别的事。从此A卡适合看电影的说法就流传下来了。不过N卡到了DX11架构后也支持了双格式解码,解码能力终于可以向AMD看齐,不过这时候CPU已经发展了三四代,入门级CPU都可以应付高清播放,显卡的解码能力已经没那么亮眼了。

  总的来说,A卡和N卡在游戏中的表现是各有优劣,在多数游戏测试中都是互有胜负,可以说是平分秋色。而“N卡玩游戏好,A卡看电影好”这种中国式谬论我们还是少听少说为好,否则会极大的限制你技术水平的长进。

  N卡和A卡虽然架构有别,但为了与各类软硬件兼容,都是遵循一定的标准进行设计,所以在性能的实现上都是一样的。而单机游戏厂商每一款大作的推出,都是里程碑式的宣传效应,单机游戏厂商的支持倾向也成为了两家必争之地,所以我们常常会在单机游戏大作中轮番看到两家品牌标志。而这个现象则导致了相当数量的初学者进入了一个误区:谁家支持的游戏多,谁的显卡就好。其实事实并没有这么简单,每个卖游戏的厂商眼中永远只有玩家数量,不会傻到为了某一家而放弃另一家,所以即使宣称专为某家显卡优化的游戏,也会给另一家显卡留下相当程度的后路,所以在多数游戏测试中即使两家显卡互有胜负,其差距也不大。

http://azetaline.com/zhilingdiaodu/381.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有